Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry
نویسندگان
چکیده
منابع مشابه
Multivariate autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry
This work addresses the autoregressive modelling of sea level time series from TOPEX/Poseidon satellite altimetry mission. Datasets from remote sensing applications are typically very large and correlated both in time and space. Multivariate analysis methods are useful tools to summarise and extract information from such large space-time datasets. Multivariate autoregressive analysis is a gener...
متن کاملMultivariate Autoregressive Modelling of fMRI time series
We propose the use of Multivariate Autoregressive (MAR) models of fMRI time series to make inferences about functional integration within the human brain. The method is demonstrated with synthetic and real data showing how such models are able to characterise inter-regional dependence. We extend linear MAR models to accommodate nonlinear interactions to model top-down modulatory processes with ...
متن کاملMultivariate autoregressive modeling of fMRI time series.
We propose the use of multivariate autoregressive (MAR) models of functional magnetic resonance imaging time series to make inferences about functional integration within the human brain. The method is demonstrated with synthetic and real data showing how such models are able to characterize interregional dependence. We extend linear MAR models to accommodate nonlinear interactions to model top...
متن کاملModelling Multivariate Time Series
Multivariate time series (MTS) data are widely available in di erent elds including medicine, nance, science and engineering. Modelling MTS data e ectively is important for many decision-making activities. In this paper, we will describe some of our e orts in modelling these data for numerous tasks such as outlier analysis, forecasting and explanation. Through the analysis of various kinds of M...
متن کاملModelling of Multivariate Time Series
We introduce graphical time series models for the analysis of dynamic relationships among variables in multivariate time series. The modelling approach is based on the notion of strong Granger causality and can be applied to time series with non-linear dependencies. The models are derived from ordinary time series models by imposing constraints that are encoded by mixed graphs. In these graphs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Processes in Geophysics
سال: 2006
ISSN: 1607-7946
DOI: 10.5194/npg-13-177-2006